Models of sequential decision making in consumer lending
نویسندگان
چکیده
Background In consumer lending, portfolio managers typically have access to a scorecard used to forecast default probability for each applicant. Scorecards are built using historical data on loan accounts and their respective performance data. The inputs into the scorecard include financial, demographic and other personal information about each applicant. The output of the scorecard is a real-valued score for each applicant, which can then be mapped to a probability of default [see Hand and Henley (1997) for scorecard construction]. Similarly, portfolio managers may have access to a scorecard forecasting applicant responses to offers. In turn, forecasts of default probabilities and response probabilities serve as inputs to business metric functions such as expected profit. In setting loan prices (or loan interest rates), loan portfolio managers face a trade-off between response and risk. Consumers prefer lower loan rates and hence lower loan rates results in higher take-up of the products, but lower profits for each account. Loan pricing is further complicated by the phenomenon of adverse selection in which the default rates of individuals who accept a loan offer may be higher than that of those who decline the offer, all other factors being equal (Phillips and Raffard 2009). Adverse selection is thought to be the result of information asymmetry. Credit bureau reports and public records, which lenders use as input for credit risk and response models, may not reflect the circumstances and immediate financial needs of the borrower. Additionally, Abstract
منابع مشابه
Matrix Sequential Hybrid Credit Scorecard Based on Logistic Regression and Clustering
The Basel II Accord pointed out benefits of credit risk management through internal models to estimate Probability of Default (PD). Banks use default predictions to estimate the loan applicants’ PD. However, in practice, PD is not useful and banks applied credit scorecards for their decision making process. Also the competitive pressures in lending industry forced banks to use profit scorecards...
متن کاملConvergence in a sequential two stages decision making process
We analyze a sequential decision making process, in which at each stepthe decision is made in two stages. In the rst stage a partially optimalaction is chosen, which allows the decision maker to learn how to improveit under the new environment. We show how inertia (cost of changing)may lead the process to converge to a routine where no further changesare made. We illustrate our scheme with some...
متن کاملA Contemporary Framework for Emotions in Consumer Decision-Making: Moving Beyond Traditional Models
Traditional models of consumer decision-making are largely cognitive and sequential in nature. While there is some recognition of an emotional component in the decision-making process, traditional models assume emotions are sequential in nature with the most important emotion being the final one, negative emotions are bad and should be overcome, cognitive and affective processes and multiple em...
متن کاملReligion and Family Structure: Two Factors Affecting on Consumer Decision Making Styles in Iran
Purpose- The aim of this essay is to attempt to explain the impact of religion and family structure on consumer decision-making style within a Muslim country. This paper wants to demonstrate how and why husbands/wives with Eastern culture and Islamic norms use different decision-making styles. Design/methodology/approach- Literature reviews on consumer decision-making, religion and family struc...
متن کاملRanking Network-Structured Decision-Making Units and Its Application in Bank Branches
Data envelopment analysis (DEA) is a method used for measuring the efficiency of decision-making units. Unlike the standard models, which assume decision-making units to be a black box, network data envelopment analysis focuses on the internal structure of these units. Some researchers have developed a two-stage method where all the inputs are entirely used in the first stage, producin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Analytics
دوره 3 شماره
صفحات -
تاریخ انتشار 2016